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Abstract. The magnetization per spin for a class of models with the Husimi-Temperley 
type interaction satisfies the Burgers equation with a diffusion coefficient l jZN ,  where N 
is the number of particles. The role of time is played by the dimensionless interaction 
parameter, and the role of spatial coordinate by the dimensionless field variable. Both 
thermodynamic scaling and finite-size scaling for the magnetization near the critical point 
are derived from a family of self-similar solutions of the corresponding Burgers equation. 
The models are specified by the initial conditions which are chosen to correspond in the 
high-temperature region to a vanishing interaction constant and in the low-temperature 
region to an infinitely large interaction constant. 

1. Introduction 

In the rigorous theory of phase transitions and critical phenomena there is an  approach 
based on partial differential inequalities involving the order parameter, see, e.g., [ 1-31. 
This approach originates from the well known Griffiths-Hurst-Sherman inequalities 
[4] and their generalizations [5]. It makes possible the rigorous analysis of the global 
phase structure of specific classes of model systems, the derivation of inequalities for 
the critical exponents etc, even in the absence of exact solutions. As pointed out by 
Aizenman [l], the efficiency of studying systems with an  infinite number of degrees 
of freedom by using partial differential inequalities with respect to few relevant variables 
may be attributed to the existence of the Kadanoff-Wilson [ 6 , 7 ]  renormalization group 
transformation. 

In  our paper [8] it has been shown that an  exact partial differential equation for 
the order parameter of a finite system may be derived in the simplest case of the 
Husimi-Temperley-Ising model. Here we generalize that treatment to the whole class 
of models described by a Hamiltonian of the form 

J "  N 

X.N({u,))= -- z U,U, -H c (7, ( 1 )  2 N  ( . , = I  , = I  

where {U,  E RI, i = 1, . . . , N }  are the dynamical variables, J 3 0 is the interaction con- 
stant, H E R '  is an  external magnetic field. Ellis and  Newman [9] have considered the 

t On leave from Institute of Mechanics and Biomechanics, Bulgarian Academy of Sciences, 11 13 Sofia, 
Bulgaria. 
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class of models with a joint probability distribution of the spins {ui} given by the 
measure pp on RN of the form 

pp(dXi, . y  ~ x N I K  h )  

Here K = J /K ,T  and h = H/ kBT are dimensionless thermodynamic parameters, po is 
a free measure of the product type 

where p is an arbitrary Bore1 probability measure on RI  which satisfies the condition 
r 

J ex2p(dx) <E. 
R‘ 

(4) 

The normalization coefficient Z $ ’ ( K ,  h )  in (2) is the partition function of the model (1). 
Here we do not confine ourselves to free product measures (3), (4), but extend the 

consideration by including the spherical model [lo], which has a free measure of the 
form 

with dx being the Lebesgue measure on RI, as well as its generalizations in the spirit 

Let us formally introduce a ‘time’ variable t and a ‘spatial’ coordinate x by the 
of [ l l ,  121. 

equalities 

t = K - K ,  x = - h  (6) 
where K,> 0 is a parameter to be determined below. Consider the magnetization per 
spin of a finite system of N particles 

N 
m%’(t,x):= Jht ( N - ’  x,)p,(dx,,  . . . ,dxNIKc+t ,  -x). ( 7 )  

By differentiating (7) with respect to the variables t and x, and taking into consideration 
the explicit expression (2) for the measure pp,  we obtain that m%’(t, x) obeys the well 
known Burgers equation (see, e.g., [13]) 

a a 1 a* - m + m- m = - 7 m. 
a t  ax 2N ax 

Note that the diffusion coefficient 1/2N in (8) is inversely proportional to the number 
of particles N in the system. Various models of the Husimi-Temperley class under 
consideration differ only in the initial condition: 
mg’( t  = - K = ,  x)  = CD%)(X) 

(9) 
which depends on the choice of the free measure po. 

On the basis of the Burgers equation (8) with the initial condition a$’( x)  = -tanh( x)  
at time t = -1, which corresponds to the Husimi-Temperley-lsing model, in our paper 
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[8] a n  analogy has been drawn between the appearance in the thermodynamic limit 
of a first-order phase transition with respect to the field variable x at  K 2 K c =  1 and  
the development of a shock wave at time t = 0 when the limit N + oc on the right-hand 
side of equation (8) is taken. Indeed, the steepness of the front of the solution 
m = m N ( t ,  x )  of equation (8) with the given initial condition -tanh(x) reaches a 
maximum at the point x = 0, where it is proportional to the initial magnetic susceptibility 
of the system. The evolution of the initial condition in the time interval -1 < t < 0 is 
such that the steepness of the front remains finite even in the thermodynamic limit 
N + W .  At time t = 0, however, the steepness of the front at  x = 0 (the initial magnetic 
susceptibility) increases unboundedly when N + CO, i.e. when the diffusion coefficient 
in equation (8) tends to zero. Next, at times t > 0 and in the limit N + CO, the nonlinear 
growth of the steepness leads to the formation of a shock wave which describes the 
jump  of the magnetization per spin under the change of the magnetic field variable x 
across the point x = 0. 

In  our paper [8] the questions about the existence of self-similar solutions of the 
Burgers equation and their relevance to finite-size scaling laws near a phase transition 
point have not been studied. This is the main purpose of the present work. In section 
2 we obtain thermodynamic scaling for the magnetization from the self-similar solutions 
of the Cauchy problem (8), (9) in the limit N -+ CO. In section 3 we derive a one-parameter 
family of critical finite-size scaling laws compatible with the Burgers equation. It is 
shown that the mean-field finite-size scaling law is uniquely determined by the ther- 
modynamic initial condition. A short discussion of the results is given in section 4. 

2. Self-similar solutions and thermodynamic scaling laws 

The thermodynamic scaling (see, e.g., [ 141) predicts that in the neighbourhood of the 
critical point t = 0 ,  h =0,  see (6 ) ,  the bulk magnetization per spin m,(t, x )  is a 
generalized homogeneous function of the variables f and x of the form 

where the two branches U,( ) of the scaling function, corresponding to t 5 0, may be 
different. Here by p and A = p + y we denote the standard critical exponents [14]. 
Note that the variable t ,  see (6 ) ,  differs in sign from the commonly accepted definition, 
therefore the high-temperature region T, < T cc corresponds to negative t ,  - K ,  s t < 0, 
and  the low-temperature region 0 d T < T, corresponds to positive t ,  0 < t s CO. 

Since m,( t, x )  obeys equation (8) in the limit N + CO: 

a a 
a t  ax 
- m + m - m = O  

then, if scaling holds, the expression (10) should be among the self-similar solutions 
of equation ( l l ) ,  at least locally in the neighbourhood of the critical point. Let us 
consider that question in more detail. 

2.1. The high-temperature region - K ,  s t < O  

In this case we look for self-similar solutions of equation (11) of the form 

t = X ( - t ) - A  
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with arbitrary positive exponents /3 and A. By inserting (12) into (11) we obtain an 
ordinary differential equation for the unknown function U+( 6): 

[ ( - t ) P + l - S ~ +  + At]vI,  - PO+ = 0. (13) 

Obviously, this equation defines a function of 6 only if the following self-similarity 
condition holds: 

A = P + l .  (14) 

Since by definition A = p + y, it follows that self-similar solutions of (1 1 )  exist only 
for the mean-field value y = 1 of the susceptibility critical exponent. Then, integrating 
equation (13) we obtain that U+ = u+(6 )  is defined as an implicit function of 6 by the 
equation 

\U+\ = A / v + + ( J P ’ ( ’ + ‘ ’ .  (15) 

Here A > 0 is an arbitrary integration constant and the exponent may still take any 
positive value. 

Let us now take into consideration that the magnetization (12) must obey the initial 
condition (9) in the limit N + m .  Hence we obtain the following condition on the 
function U+: 

(K,)Pv+(xK,”-’) = @scp)(x). (16) 

We may point out, for example, that in the case of the Husimi-Temperley-Ising 
model one has 

@$)(x) = -tanh(x) (17)  

and in the case of the Husimi-Temperley spherical model the initial condition is 

= -IN,*( Nx)/ I, N -2) ,2(  Nx) = -2x[ 1 + ( 4xz + 1 - I  + O( N- l ) .  (18) 

Obviously, neither @c’(x),  nor @g’(x)  obeys in general the constraint imposed on 
@%)(x)  by equation (15 )  at t = -Kc:  

(19) 
Moreover, from (19) it follows that the function @%’(x) must diverge when x + m ,  
while actually @%)(x + *a) + Tm,,(m), where mo(m) is the saturation magnetization 
per spin. Therefore, the models of the Husimi-Temperley class considered here may 
not have globally self-similar magnetization of the form (12). Consider then the local 
properties of the solutions of the Cauchy problem when x + 0. Confining ourselves to 
the case of symmetric free measures p,,, which implies @%’(-x)=-@g)(x)  and 
assuming the analyticity of @%’(x) at the point x = 0, we consider the expansion 

I @ ? ( X ) ~  = A ~ K , @ ~ ( X ) + X I  P l ( P + l ) ,  

Now we may satisfy the constraint (19) by setting 

For the coefficients of higher powers of x one obtains a system of recursion relations. 
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Thus the condition that the self-similar solution (12) locally satisfies the initial 
condition (20) in the neighbourhood of the point x = 0 implies the mean-field value 
p =; of the magnetization critical exponent. Moreover, we have expressed the para- 
meters K ,  and A in terms of quantities depending on the specific model. 

2.2. The low-temperature region 0 < I  E 

In this case we look for self-similar solutions of equation (18) of the form 

m = t P u - ( [ )  6 = X t P  (22) 
with arbitrary positive exponents p and A .  By inserting (22) into (11) we obtain an  
ordinary differential equation for the unknown function U-(() (cf (13)) 

v - - A ~ ] u ' + p u - = o .  (23) [ p - A  

The self-similarity condition is again given by (14), hence y = 1. The function U- = U-( 6) 
is defined as an  implicit function of [ by the equation (cf ( 1 5 ) )  

(24) 
where A > 0 is an  arbitrary integration constant. 

Since t = O  is a point of singularity, a new Cauchy problem now emerges with the 
natural initial (under time inversion) condition being set at t =a, which corresponds 
to an  infinitely large interaction constant or  zero temperature. In this limit the magnetiz- 
ation per spin should tend to the step function 

(25) 

where mo(co) is the saturation magnetization per spin. From (22) and (25) it follows 
that when [+ 0' the function U-([) should have a singular behaviour of the form 

U-( 6) -- -sgn( 6) m,( C G ) ~  ( 1  ( P + l ) .  (26) 
However, functions with such an asymptotic behaviour cannot satisfy equation (24) 
at small 6, i.e. we find again that a globally self-similar solution of the Cauchy problem 
(111, (25) does not exist. Obviously, the restriction of our consideration to the neigh- 
bourhood of the line (0  < r s CO, h = 0} does not suffice now. To satisfy the self-similarity 
constraints, we have to set the initial condition closer to the critical point t = O', h = 0. 
This, in turn, necessitates the use of a phenomenological argument about its shape. 
By taking into account the existence of spontaneous magnetization m,( t, 0') = Tm,( t )  
and initial magnetic susceptibility ,yx( t, 0') = , y o ( t )  when t > 0 and H + O', we assume 
that for sufficiently small t o > O  and H+O* the initial condition has the form 

P I t P + I l  1 0 - 1  = AI U- - 51 

lim m,( t, x )  = -sgn(x)mo(cc) 
1-CX 

m , ( t ~ ,  ~ l ~ ~ ~ o ~ = s g ~ ( ~ ~ ~ o ~ ~ o ~ + , y o ~ ~ o ~ ~ + ~ ( ~ 3 ~ .  (27) 

mo( to)  - t{ + o x o ( t 0 ) -  t i Y + O  ( t O - , O )  (28) 

Note that when to+ 0 

in accordance with the definition of the critical exponents p > 0 and  y > 0. Next, (24) 
may be rewritten as an equation of state for the magnetization (22): 

ltm - X I  = Im/A/'P' l ' 'P.  (29) 
By inserting the initial condition (27)  into equation (29) at t = to and x + O  and by 
comparing terms of the same order of magnitude in the field H, we obtain 

mo( t o )  = AP"t{ (kBTo)xo(to) = p i ; ' .  (30) 
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Therefore, the self-similar solution (22) satisfies the local initial condition (27) at 
arbitrary positive values /3 > 0 of the spontaneous magnetization critical exponent and 
the mean-field value y = 1 of the initial susceptability critical exponent. But to comply 
with the thermodynamics of the Husimi-Temperley models we have to set 

p = f  A =  ( 1 - 0  lim t m i ( t )  ) I f 3  . (31) 

Then expressions (30) for the spontaneous magnetization and the initial susceptibility 
take the asymptotic form predicted by the mean-field theory. 

3. Derivation of finite-size scaling from the Burgers equation 

Consider now what kind of information about critical finite-size scaling is contained 
in the form of the differential equation for the order parameter of the finite system, 
see (8), and what information is contained in the initial condition (9). 

In accordance with the Privman hypothesis [ 151 ,  see also [ 161, we look for solutions 
of the Burgers equation (8) in the self-similar form 

(32) 

w = NPm x, = N"t x, = N'x (33) 

m = N-"w( Nqt,  N'x) 

with arbitrary positive exponents p ,  q and r. By introducing the variables 

we may cast the Burgers equation (8) in the form 

Since the function w(xl,  x,), see (32), does not explicitly depend on N, the existence 
of such a self-similar solution requires the equalities 

q = 1 - 2 p  r = l - p  (35) 
where 0 < p < f is an arbitrary parameter at present. Therefore, the most general form 
of the finite-size scaling laws compatible with the Burgers equation is 

m N (  f ,  x)  = N-Pw( N'-2pt, NLWPx)  o < p < ; .  (36) 

Here the function w(xl,  x2) is a solution of the N-independent Burgers equation 

a a 1 a' 
8x1 ax, 2 ax2 

w + w- w = - 7 w. - (37) 

Let us now consider the initial condition (9) which in the new variables (33) has 

(38) 

To study (38) when N + CO, we need the asymptotic form of w(xl,  x2), when x, + --CO. 

We note that at any fixed t # 0 the limit N + in expression (36) for the magnetization 
should lead to the thermodynamic result (10) which may happen only if 

the form 

w(xI = -KcN1-*', x2) = NP@."'(NP-'x2). 

W(XI, x*) = jx , /~v&jx , l -~- ' )  (39) 
X I  - *x 
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and, moreover, under the condition that p and p satisfy the equalities 

1 - p  = ( 1  - 2 p ) ( P +  1 )  ( 1  - 2 p ) p  = p .  (40) 

Hence we obtain 

P = P/(2P + 1 )  

or in view of p = f we have p = i. Now one may readily check that the initial condition 
(38) at fixed x2 and N+co reduces to the equality 

(K,) 'u+(O) = @ z ' ( O )  (42) 

which holds due to condition (16) at x = 0. 

4. Discussion 

We have derived the general one-parameter family (36) of finite-size scaling laws 
compatible with the Burgers equation. Remarkably, the value p = f of the magnetization 
critical exponent, and hence the value p = t ,  see (41), is determined solely by the power 
of the second term in the Taylor expansion (20) of the initial condition and does not 
depend on details of the model, i.e. on the specific choice of the free measure po. If 
instead of (20), the following expansion holds: 

a@Z)(o) 1 azk+'@:)(0) X 2 k T 1  
X +  +. . . 

(2k+ l ) !  
cpg'(x) =- 

ax (43) 

we will obtain 

p = (2k)-' p = [2k( k + 1)]-'.  (44) 
In the thermodynamic limit equation ( 1 1 )  describes the exact evolution of the 

magnetization profile {m,( t ,  x), x E R'} under the change of the interaction parameter 
K = K,+ t. Two Cauchy problems have emerged in a natural way. In the high- 
temperature region 0 s K < K ,  the initial moment of time t = - K ,  corresponds to a 
system of non-interacting spins, the magnetization profile of which carries information 
about the limiting free measure po on R". In the case when p,, is a product measure 
[9], see (3), the thermodynamic limit for the system of non-interacting particles is 
trivial, the initial condition (9) is independent of N and characterizes only the 
one-particle measure. Then equation ( 1  1) relates the self-similar behaviour of the 
system of interacting particles in the neighbourhood of the critical point to the trivial 
behaviour of the system of free particles. In that sense the evolution equation ( 1 1 )  
corresponds to the renormalization group flow from the neighbourhood of the critical 
point to the trivial fixed point characterized by vanishing interaction constant. In an 
analogous way, in the low-temperature region K ,  < K s 03 the evolution equation (1 1) 
corresponds to the renormalization group flow from the neighbourhood of the critical 
point to another trivial fixed point characterized by the infinitely large interaction 
constant. 

In both cases self-similarity appears as a local property of the Cauchy problem. 
The role of the initial condition consists in the reduction of the one-parameter family 
of self-similar solutions of the evolution equation to a single representative. The classes 
of critical universality are determined by the gross features of the initial condition near 
the zero-field point, and in the low-temperature region they are also determined by 



5654 J G Brankov 

the asymptotic behaviour of the order parameter on approaching the critical tem- 
perature. 

For any finite system of the Husimi-Temperley class the one-parameter family of 
solutions (36) of the Burgers equation analytically depends on the temperature, - K c G  
t <CO, and the magnetic field x ER’  with the only exception of the point at infinity 
t = CO, x = 0. The reduction of the parameter p E (0, f) of the corresponding family of 
finite-size scaling laws to its value p = p / ( 2 p  + 1) takes place under the condition that 
the thermodynamic limit for the magnetization exists. The explicit expression for the 
finite-size scaling function w(xI, x2) may be easily obtained from the well known 
integral representation for the solution of the Cauchy problem for the Burgers equation, 
see, e.g., [13]. 
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